Midwest Nano Infrastructure Corridor (MiNIC)

Steven J. Koester, Director

NNCI Annual Meeting October 25-27, 2023

Midwest Nano Infrastructure Corridor (MiNIC)

- Located at the University of Minnesota,
 Minneapolis, MN. Two main user hubs:
- Minnesota Nano Center (MNC)
 - Two cleanrooms + NanoBio / NanoMaterials labs
- Characterization Facility (CharFac)
 - Four facilities for hard, soft, and biomaterials located in related buildings

Steve Koester

Kristina Pearson

Nate Lynch

Javier Garcia
Barriocanal

Brian Olmsted

Jim Marti

Greg Haugstad

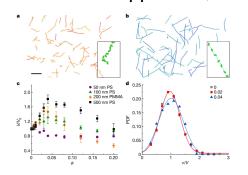
Theresa Reinecke

mnc.umn.edu

Characterization Facility (Charfac)

Our Prompt(s)

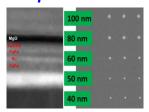
- Examples of programs, activities and relationships that could be expanded upon in a future network.
- How Can NNCI Support National Research Priorities in the Next 5-10 Years?



Support for Leading Basic Research

 The NNCI remains the only national nanotechnology network that supports basic research, in all its various forms. Below is a summary for MiNIC:

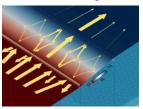
Scientific impact


CY 2022 = 212 journals, 44 conferences FY 2023 = supported \$138M+ in external projects

The colloidal nature of complex fluids enhances bacterial motility.

Nature, 2022.

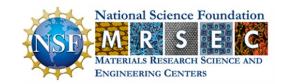
Spintronics


Nano Lett., 2022

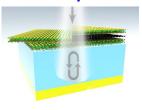
Flexible Electronics

NPJ Flex. Electron., 2022

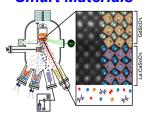
Quantum Physics



Nature Commun, 2022


Center-Level Support

<u>Spintronic Materials for Advanced Information Technologies (SMART)</u>



Nano-Optics

Nature Commun., 2023

Smart Materials

ACS Nano, 2023

Semiconductor Workforce Development

- Minnesota Semiconductor Manufacturing Consortium:
 - MiNIC is helping to lead a major new initiative to support workforce development in microelectronics industry.
 - Working with leading microelectronics and MEMS companies, University professional training groups, and a major regional economic development organization to develop a 10-week training course for new and incumbent workers in microelectronics. Upscaling semiconductor workforce.

Supported by a grant from the Minnesota Department of Employment and **Economic Development.**

College of Science and Engineering Technological Leadership Institute

Round table with Sen. Amy Klobuchar

Research Experience for Teachers

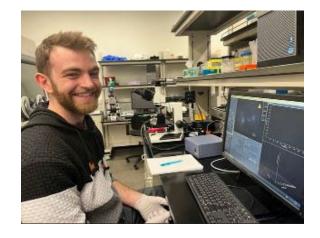
- MiNIC is working with SHyNE
 (Northwestern), NNF (U Nebraska Lincoln) and SENIC (Georgia Tech)
 to offer an RET experience for up
 to 5 teachers at each site.
- RET teachers spend 5 weeks in summer working with faculty research groups. The participants:
 - develop a classroom activity related to nanoscience or STEM,
 - attend annual meeting of the National Science Teachers Association (NSTA).

Teachers staffing the NNCI booth and presenting their new lessons at the NSTA annual meeting.

Very important for future infrastructure since it is our best opportunity to engage with students at an early stage → motivate nano careers before it's too late.

Internship Programs

• MiNIC's laboratory internship program (MiNSPIRE) offers students from two-year colleges the chance to work in a nanoscience lab:



(Hammadala, e.g.)

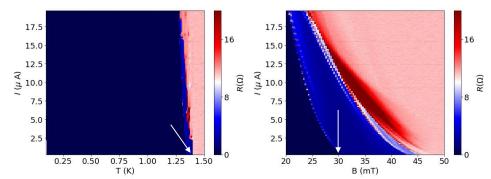
Residing Curative Committee on the Com

- 9 students supported from fall 2021 to spring 2023.
- Projects studied included:
 - synthesis of fluorescent nanoparticles.
 - genetically modifying cells.
- The students used our NanoBio labs and tools to characterize nanoparticle dispersions and culture human cell lines.
- Current year interns also working on microelectronics projects.
- Community college engagement importance emphasized by Sec.
 Raimondo / Sen. Klobuchar visit to
 Normandale Community college in July.

Early-Stage Student Bootcamps

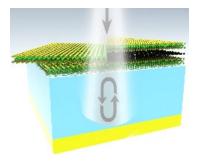
- MiNIC hosted a 10-day program in the summer of 2023 designed for early-stage undergraduate students to introduce them to key topics in quantum phenomena and their computing devices.
- Guest speakers from Intel, Google, Seagate, other companies.
- Combined US students and students from Kyung Hee University.
- Emphasizing early stage students...before REU eligible.
 Goal is to get them involved in nano/quantum before moving into another area.

https://sites.google.com/umn.edu/quantum/home



Support for Key Focus Areas: Quantum

- MiNIC has a focus on developing infrastructure for quantum devices and materials:
- AJA ATC 1800-HY UHV tool:
 - System is now supporting quantum device research by enabling fabrication of superconducting AI thin films and Josephson Junctions.



Superconducting properties of a 13-nm Al thin film, deposited using MNC's ultra-high vacuum AJA ATC 1800-HY.

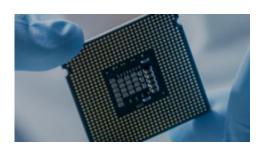
Ultra-high-purity 2D material assembly system:

Twisted TMD layers for "perfect absorbers".

Support for Key Focus Areas: Quantum

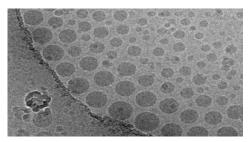
 MiNIC co-leads TransformQuantum research community, and leading on studying quantum infrastructure:

Time (EDT)	EDT) DAY 1 Tuesday, 4/13		DAY 2	DAY 3	
(22.)			Wednesday, 4/14	Thursday, 4/15	
12:00 PM	Welcome, Steven Koester		Welcome, Steven Koester	Welcome, Steven Koester	
U Minnesot			U Minnesota	U Minnesota	
12:05 PM	Welcome, Dawn Tilbury , <i>NSF</i>		Intro to NQCO, Alex Cronin , NQCO	NNCI node presentations: Minnesota, Cornell, Harvard,	
12:10 PM	Intro to NNCI program, Lawrence Goldberg, NSF		NNCI node presentations: Stanford, U Washington, NC	and Nebraska	
12:15 PM	Overview of NNCI program, Oliver Brand, Ga Tech		State, and Montana State		
12:35 PM	PM NSF Center for Quantum Networks, Saikat Guha, U Arizona		NSF Quantum Foundry, Ania	DOE Quantum Science Center, David Dean , <i>ORNL</i>	
			Bleszynski Jayich, UCSB		
				(starting at 12:30 PM)	
1:05 PM	Break		Break	Break (starting at 1:00 PM)	
1:15 PM	Superconducting Qubits 1,		Color Centers & Optics 1,	Topological Qubits 1, Chris	
David Schuster,		, U Chicago	Jelena Vuckovic, Stanford U	Palmstrøm, UCSB	
1:45 PM	Superconducting Qubits 2,		Color Centers & Optics 2, Kai-	Topological Qubits 2, Amir	
	Will Oliver, MIT-LL		Mei Fu, U Washington	Yacoby, Harvard U	
2:15 PM	Break		Break	Break	
2:30 PM	Trapped Ions 1, Kenneth		Color Centers & Optics 3,	Spin Qubits 1 , Mark	
	Brown, Duke U		Dirk Englund, MIT	Eriksson, UW-Madison	
3:00 PM	Trapped Ions 2, Susan Clark,		Color Centers & Optics 4,	Spin Qubits 2, Jason Petta,	
	Sandia National Labs		Marko Lončar, Harvard U	Princeton U	
3:30 PM	Breakout 1,	Breakout 2,	Breakout, Color Centers &	Breakout 1,	Breakout 2,
	SC Qubit	Trapped Ion	Optics Infrastructure	Topological	Spin Qubit
	Infrastructure	Infrastructure		Infrastructure	Infrastructure
4:30 PM	Breakout Summary Reports		Breakout Summary Reports	Breakout Summary Reports	
5:00 PM	Adjourn		Adjourn	Adjourn	



New workshop planned for APS March meeting in 2024.

Support for Key Focus Areas: Rules of Life


 MiNIC is a critical resource for local start-up companies to develop initial prototypes and to scale-up new nano-scale bio-medical technology:

Zeptolife uses GMR sensors and a microfluidic environment with magnetic particles to create a fully-automated, extremely high sensitivity assay.

Grip Molecular develops next generation graphene biosensors for lab quality diagnostics at home.

Superior Nano uses MNC's NanoBio labs to develop lipid-based nano-particles for improved transdermal drug delivery.

Supporting Tech Transfer

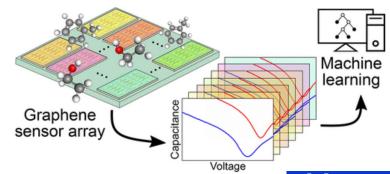
MiNIC supports numerous early-stage start-ups. Minnesota recently was awarded a
Department of Commerce Tech Hub → direct links to NNCI supported projects!

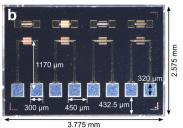
Minnesota MedTech Hub 3.0

Lead Agency: Minneapolis Saint Paul Economic Development Partnership

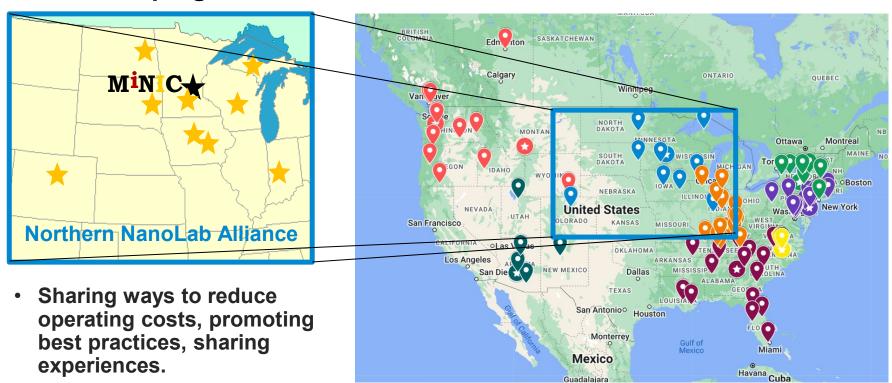
State Served: Minnesota

Applicant-Defined Region: Minneapolis-Saint Paul-Bloomington MSA


Core Technology Area: smart medical technologies



E-nose developed through MiNIC and licensed to new spin-out VOCxi Health.

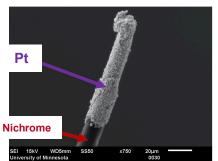

MINIC Midwest Nano

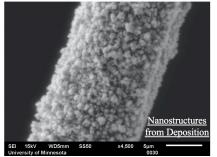
Infrastructure Corridor

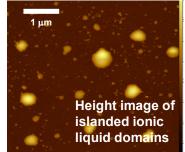
Regional Networks

 NNCI nodes have spurred the formation of local networks to ensure that every institution can benefit from NNCI know-how. MiNIC was a leader in developing this model:

One of the best ways to democratize access to nano in a future network.




User Incentive Programs


- Explore Nano: Incentive program to attract new external/industrial users to MiNIC's facilities:
 - The program offers a \$2000 subsidy to new users of either MNC or CharFac facilities to offset user fees.
 - Nearly 20 new users supported in since restarting during pandemic.
 - Spawned new scientific collaborations between external users (with unique materials problems) and MiNIC staff scientists (with unique analytical expertise).

Example 1:

Fasikl Inc. created a peripheral neural interface system which enables new levels of neural communication with prosthetic limbs.

Example 2:

University of Mississippi used the AFM in attractive-regime AC mode to image ionic-liquid domain morphology.

How Can NNCI Support National Research Priorities in the Next 5-10 Years?

Basic research:

- Retain strong emphasis on basic science. Make sure our equipment is on the cutting edge of capabilities for new science (e.g. quantum, bio).
 Provide some direct support for infrastructure → coordinate MRI program. Provide support for permanent staff for institutional memory.
- Focus areas (CHIPS / Quantum / Bio):
 - Emphasize education / training greatly, both for early stage researchers and retraining. Support basic research side of these areas (e.g. NSF FuSe). Make sure new network can develop a pipeline of technology into development (e.g Commons, NSTC, Tech Hubs).
- Access to Nano:
 - Strong emphasis on regional networks. Maintain central facilities, but have more "spokes." Develop master access documents or fast access template to make using other sites easier. Be the first introduction to nano for K-12.

