Northwest Nanotechnology Infrastructure (NNI)

University of Washington / Oregon State University
PI: Karl F. Böhringer
NNCI Annual Conference
Stanford University, CA, October 27, 2023

NNI – Vision

The NNCI Northwest Nanotechnology Infrastructure acts as an engine for innovation and economic development by providing world-class nanotechnology infrastructure for a broad and diverse user base, paired with technical and educational leadership in photonic and quantum devices, advanced energy materials and devices, and bio-nano interfaces and systems.

NNI 2.0 Team – Facilities and Principal Focus Areas

Lara Gamble

Greg Herman

John Conley

Todd Miller

present today

Daniel Ratner National Nanotechnology

Joe Baio

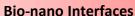
Liney Árnadóttir

NNCI NORTHWEST NANOTECHNOLOGY INFRASTRUCTURE

Integrated Photonics / Quantum

Kai-Mei Fu

Energy Materials & Devices



Chih-hung Chang Zhenxing Feng David Ginger Daniel Schwartz

Joe Baio

Daniel Ratner Lara Gamble

What successful examples of programs, activities, and relationships in the current NNCI could be adapted or expanded for multiple sites in a future network?

Regional Networks

- Northwest Nano Lab Alliance (NWNLA)
 - Regional platform for exchange of laboratory experiences and best practices
 - Joint effort by NNI and MONT
 - Biennial meetings, alternating with UGIM (online 11/2021, in-person 8/2023, 2025)
 - Attendees from across the PNW including Canada
- Develop more opportunities for staff career advancement, e.g., "nano sabbaticals"
- New alliances
 - NSF <u>Northwest Engine for Advancing the Semiconductor Ecosystem</u> led by OSU, with academic, government, and industry partners
 - Oregon Semiconductor Center of Innovation Excellence (CIE)
 led by OSU, Intel, Oregon Business Council

What successful examples of programs, activities, and relationships in the current NNCI could be adapted or expanded for multiple sites in a future network?

Collaboration with Industry

- More than 20% of US semiconductor jobs are in Pacific NW, even though ID, OR, WA have less than 14M (5%) of US population
- Aligning with national semiconductor technology centers:
 - New <u>Advanced Lithography Center</u> in Hillsboro, OR
 - New Memory Center of Excellence, \$15B Micron memory fab in Boise, ID
 - Northwest University Semiconductor Network, led by Micron
 has grown to 13 universities and numerous community colleges in CA, ID, MT, OR, UT, WA
- Need integration of strategic public sector and academic institution involvement to maximize impact on workforce development, innovation, entrepreneurship

What successful examples of programs, activities, and relationships in the current NNCI could be adapted or expanded for multiple sites in a future network?

Workforce Development

- Extensive Undergraduate Laboratory Assistant program
 - NNI employs ~20 undergrads/year, mentored by staff, increasingly complex tasks
- Short courses and workshops
 - Started with local students, focus on URMs
 - Expanded to professional students
 - Hands-on courses are expensive but growing support from industry
- WFD at all levels
 - K-12 and tribal outreach & research experience for tribal teachers
 - Build sustained relationships with K-12 tribal partners
 - On-campus experiences for students and teachers
 - College transition programs for longitudinal engagement and tracking
 - Focus on retention in 4-year engineering degree programs
 - Target underserved populations with intrusive academic and advising support
- Need repository for content and best practices, sharing with other sites
- Deliver workforce development at scale how to grow from 20 to 2000 per year?

Panel 4: NNI, CNS, NanoEarth, MiNIC

- NNCI facilities support research in virtually every 'national research priority' bedrock of academic research in this space
 - "NNCI brand" unique capabilities for foundational research and education
 - Complementary to regional engines, ME commons, which focus on economic development
 - Recent survey: NNCI facilities support >2,600 PIs, ~3,900 grants worth >\$5B
- Build on NNCI's strengths
 - Address a wide variety of fields with broadly distributed impacts
 - Reach out to non-NNCI sites
 - Obtain support for permanent staff and workhorse tools essential for broad accessibility
 - Define goals and milestones for 5-year / 10-year success

Panel 4: NNI, CNS, NanoEarth, MiNIC

- Lab-to-Fab: prototyping using new materials and processing techniques to address an expanding range of problems
 - Advancing processing technology to enable new products
 - Trade-offs: flexibility, cost
 - Protection of IP
- Workforce: engage a diverse group of students (at all levels) in high-tech projects
 - A diverse selection of schools, culturally and geographically, to extend the NNCI network

