

NNCI: Southeastern Nanotechnology Infrastructure Corridor (SENIC)

2023 NNCI Annual Conference

Georgia Tech Institute for Electronics and Nanotechnology

SENIC: 3 Universities – 2 Locations – 1 Site

Partnership of two major & modern nanotechnology centers in the southeastern US:

- Institute for Electronics and Nanotechnology (IEN), an Interdisciplinary Research Institute at the Georgia Institute of Technology (GT)
- Joint School of Nanoscience and Nanoengineering (JSNN), an academic collaboration between North Carolina A&T State University (NC A&T) and University of North Carolina, Greensboro (UNCG)

GT-IEN Marcus Nanotechnology Building

JSNN Building

SENIC Vision & Strategic Goals (Years 6-10)

Vision Statement

To be a premier nano-fabrication and nanocharacterization resource to southeastern US user communities from academia, small and large companies, and government organizations, providing tools, staff expertise, E&O activities, as well as SEI of nanotechnology programs.

Strategic Goals

- 1. Develop and Serve Diverse User Base
- 2. Develop Strong Synergies between Partners
- 3. Expanding Capabilities based on Future Research Trends
- 4. Develop E&O and SEI Programs Targeting the SE
- 5. Assist NNCI Network in Becoming More Than the Sum of its Parts

SENIC Team & Management Structure

Oliver Brand

David Gottfried (GT, PI)

Shyam Aravamudhan (NCA&T, co-PI)

Diana Hicks (GT, SEI)

Dan Herr

(UNCG, E&O)

Walter Henderson (GT, MCF)

Sherine Obare (UNCG, co-PI)

Mikkel Thomas

(GT, E&O)

Amy Duke (GT, Program Manager)

Stephen Crawford (JSNN, Core

Gary Spinner (GT, Cleanroom)

Leslie O'Neill (GT, E&O)

Facilities)

SENIC and New Initiatives

What successful examples of programs, activities, and relationships in the current NNCI could be adapted or expanded for multiple sites in a future network?

- 1. Tracking our users and where they land with regard to employment
- 2. Responding to the education needs of rural and underserved communities
- 3. Strengthening industry and national lab engagement

Southeastern Nanotechnology Infrastructure Corridor Examining Career Paths of Former Nanotechnology Research Facility Users: A Case Study and Toolkit

Diana Hicks and Sergio Pelaez

Examining Career Paths of Former Nanotechnology Research Facility Users: A Case Study and Toolkit

OBJECTIVES

- Analyze career outcomes of past users of SENIC facilities to understand workforce impact.
- Create a toolkit for this analysis to be replicated with new data.
- Strengthen the case for multiuser facility funding.
- Inform user facility management.

METHODOLOGY

- Collected name, affiliation, email of past SENIC users.
- Searched LinkedIn to find current employer, timeline, job title, location.
- Qualitative coding of sectors using Global Industry Classification Standard (GICS), transition paths, and job types.

3271 TOTAL USERS:

Destination of SENIC users

Sectors in which past SENIC users are currently employed

University	191	
Semiconductors	162	
Research and Consulting Services	95	
Biotechnology	65	
Aerospace and Defense	53	
Interactive Media and Services	47	
Semiconductor Materials and Equipment	42	
Technology Hardware, Storage and Peripherals	42	
Application Software	37	
National Laboratory	35	
Pharmaceuticals	35	
Health Care Equipment	32	
Construction and Engineering	28	
Life Sciences Tools and Services	27	
Commodity Chemicals	22	
Specialty Chemicals	20	

Source: : Own elaboration with data gathered from LinkedIn, NetAdvantage, and IEN and JSSN lists • Created with Datawrapper

Top employers of SENIC alumni

- Findings reveal SENIC's contribution to a skilled, highly-demanded nanotech workforce.
- Making visible this knowledge transfer to critical national industries strengthens the case for funding of multiuser facilities.
- Can inform facilities' strategic planning to maximize career prospects for users.

Company	People
Intel Corporation	84
Apple	26
Meta	20
Caral	10
Google	18
Sandia National Laboratories	1/
Applied Materials	16
Amazon	14
Georgia Institute of Technology	12
Exponent	9
Micron Technology	9
Northrop Grumman	9
Qualcomm	9
Amgen	8
L3Harris Technologies	7
Lam Research	7
Lockheed Martin	7
Oorvo Inc	7
Duke University	6
IBM	6
KLA	6
Lawrence Livermore National	-
Laboratory	6
McKinsey & Company	6
NIST	6
Sila Nanotechnologies Inc	6
Tesla	6
TSMC	6

Strengthening our Engagement with National Labs

70 YEARS OF SCIENCE & INNOVATION

National Nanotechnology Coordinated Infrastructure

Southeastern Nanotechnology Infrastructure Corridor Sandia

National

Laboratories

Education and Training Initiatives

Industry-Guided Education

- Understanding the cleanroom environment
- Techniques for nano- and micro-fabrication
- Cleanroom Safety Training
- Introduction to Experimental Design and Statistical Process Control
- Hands-on experience in Thin-Film Deposition and Characterization
- Introduction to Vacuum Systems, Process/Metrology Equipment and Fabrication Processes
- Microelectronics and Semiconductor Technology

Teacher Development

- Nanoscience Summer Institute for Middle School Teachers (Nano SIMST)
- Curriculum is based on the nano@Stanford program and adapted for 4 hours of virtual instruction per day for 5 days.
- Organized by JSNN with GT support
- 3rd cohort: 15 teachers from NC (53% teach in a Title I school) and 15 teachers from CA
- Intentional involvement of teachers from rural and underserved communities.

Nanoscience Summer Institute for Middle School Teachers

North Carolina Rural and Urban Counties

Intel Sponsorship to Establish a Microelectronics Training Program

Twelve (12) undergraduate/graduate students are participating in the JSNN-Intel program that aims to strengthen talent pipelines in support of Intel's IDM2.0 workforce growth in the key areas of interest for workforce development.

8 Week Program [06/05/2023 - 07/28/2023]

Program Goals:

(1)To provide hands-on experiential learning opportunities for graduate and undergraduate students, and 2-year community college students;

(2)To broaden semiconductor research and training opportunities for science and engineering students from HBCUs and MSIs; and

(3)To deepen training of (with an aim to retain and nurture) diverse graduate students and to provide upskilling and experiential opportunities for community college educators.

National Nanotechnology Coordinated Infrastructure

Shyam Aravamudhan

Micron Chip Camp

- Three-day camp for middle school students
- IEN hosted the third day of the camp
- Sixty-six students participated at the event at Georgia Tech
- Campers were exposed to hands-on nano demos, the cleanroom, MCF, and the Invention Studio (student run maker space) at Georgia Tech

Mikkel Thomas, PhD

Future Opportunities

- Understanding workforce demands and strategies to best prepare students for participation.
- Strengthening partnerships with social scientists and educators to create innovative ways of connecting with communities and industry to create a future workforce involving rural and underserved communities.
- Engaging industry and national lab partners to collaboratively develop programs to meet their current and future demands.

dinated Infrastructure

Thank You!

http://www.nnci.net http://senic.gatech.edu http://www.ien.gatech.edu http://jsnn.ncat.uncg.edu

facebook.com/senic4nano

@senicnanotech

linkedin.com/company/senic/